Skip to main content
Search
Main content
Science advances
Published

Galectin-3 induces neurodevelopmental apical-basal polarity and regulates gyrification

Authors

Luana Campos Soares, Ning Huang, Hana Bernhardova, Viviana Macarelli, Marva Chan, Lara Nikel, Sara Bandiera, Dongnan Yan, Dhanu Gupta, Elisa M Cruz, Talia Vasaturo-Kolodner, James M Hillis, Matthew Wood, Mootaz Salman, Zoltán Molnár, Eric O'Neill, Francis G Szele

Abstract

Sci Adv. 2025 Sep 5;11(36):eadt5859. doi: 10.1126/sciadv.adt5859. Epub 2025 Sep 3.

ABSTRACT

Apical-basal polarity (ABP) establishment and maintenance is necessary for proper brain development, yet how it is controlled is unclear. Galectin-3 (Gal-3) has been previously implicated in ABP of epithelial cells, and, here, we find that it is apically expressed in human embryonic stem cells (hESCs) during neural induction. Gal-3 blockade disrupts ABP and alters the distribution of junctional proteins in hESC-derived neural rosettes and is rescued by addition of recombinant Gal-3. Transcriptomics analysis shows that blocking Gal-3 regulates expression of genes responsible for nervous system development and cell junction assembly, among others. Last, Gal-3 blockade during embryonic development in vivo reduces horizontal cell divisions, disturbs cortical layering of neural progenitors, and induces gyrification. These data uncover a regulatory mechanism for ABP in the brain and warrant caution in modulating Gal-3 during pregnancy.

PMID:40901969 | DOI:10.1126/sciadv.adt5859

UK DRI Authors

Mootaz Salman profile

Dr Mootaz Salman

Group Leader

Deciphering the role of the blood-brain barrier in neurodegeneration

Dr Mootaz Salman