Abstract
Life Sci Alliance. 2026 Feb 4;9(4):e202503527. doi: 10.26508/lsa.202503527. Print 2026 Apr.
ABSTRACT
The polarised and complex morphology of neurons poses massive challenges for efficient cargo delivery between the axon and soma, a process termed axonal transport. We have previously shown that the retrograde axonal transport of pro-survival, neurotrophic signalling endosomes relies on Rab7 in motor neurons, and that their trafficking is impaired in the early stages of amyotrophic lateral sclerosis (ALS) pathogenesis. Here, we report the effect of Rab7 phosphorylation on the transport of these signalling endosomes. We show that the ALS-linked kinase TBK1 phosphorylates Rab7 at S72 in neurons, altering its binding to cytoplasmic dynein adaptors. Accordingly, both TBK1 knockdown and the expression of a loss-of-function Rab7 mutant (S72E) induce aberrant bidirectional movement of signalling endosomes without modifying neuronal polarity or endosomal sorting. This alteration is specific for signalling endosomes, as axonal transport of lysosomes and mitochondria remains unaffected. We have therefore discovered a new TBK1 function that ensures the unidirectional transport of signalling endosomes, suggesting that reduced TBK1 activity determines retrograde transport dysfunctions and long-range signalling impairments.
PMID:41638908 | DOI:10.26508/lsa.202503527
UK DRI Authors